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Abstract

Plastic recycling is a brilliant method of reducing the impact that plastic has on our natural
environment, however it still suffers from many problems that stop it from being truly effective. A
major issue is the expensive and inaccessible nature of plastic identification technology, which is
necessary for separating polymer types and allowing the material to be recycled. Infrared Spectroscopy
is the industry standard for identifying polymer types, however most of the technology has been
designed for costly machines that process large volumes of plastic and is thus the technology tends to
be out of the price range of small-medium scale recyclers. An open-source project ‘The Plastic Scanner’
is trying to solve this by utilising a cheaper method of ‘Discrete Spectroscopy’ paired with Machine
Learning, however they have yet to develop a device with accuracy & reliability suitable for commercial
use.

This capstone project seeks to further develop and improve on the work produced by The Plastic
Scanner project, especially to overcome the PCB noise and accuracy problems that they are facing.
This was achieved by developing a new version of the plastic scanner device, taking some of their
proposed ideas and concepts but making new design and technical choices along the way. The device
works by shining IR LEDs of very specific/discrete wavelengths of light onto a plastic sample. A differing
amount of this light will be reflected depending on the type of plastic, which is then collected by a
photodiode and converted to a digital value. In the Plastic Scanner project, there are 8 intensity data
points collected, one for each LED in sequence. A novel improvement proposed in this report is to also
shine the adjacent pairs of LEDs together. The light from these pairs superimpose, giving a new unique
intensity value, resulting in a total 15 data points collected (8 original values, plus 7 new superimposed
values). These values are then fed into a feed forward, supervised machine learning model that was
trained on collected data from the device. The model suggests the most likely plastic, which is then
output to a touchscreen display on the device. In total there were 2580 individual scans collected on
over 500 plastic samples. The completed project from this report is a battery powered, portable
handheld device capable of identifying HDPE, LDPE, PP, PET, PVC, PLA & PETG polymer types with a
real-world accuracy of over 92%. The results found in this project represent a tremendous
advancement in affordable plastic identification technology, which could prove beneficial to small-
medium scale recyclers and allow for more plastic to be recycled and not end up in landfill.
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1 Introduction

Plastic is an increasingly pressing environmental concern in the modern world, as more plastic is being
produced now than at any point in history (Walker & Fequet, 2023). Plastic recycling has shown the
potential to solve this problem however, there are still several issues that need to be addressed before
it can be truly effective. One particularly big issue is the expensive and inaccessible nature of plastic
identification technology. Plastic identification is an integral part to the recycling process, as plastics
need to be sorted into their polymer types before being recycled, otherwise the resultant plastic is of
a poor and often unusable quality (Jack, 2022).

There are many different methods that can be used for identification of plastic types, which until recent
decades mainly involved testing the plastics physical properties like melting temperature, density and
solubility (Zhu, et al. 2019). These methods are not only destructive, but also take considerable
amounts of time and often lack accuracy. In the past few decades, Infrared (IR) Spectroscopy has
emerged as the gold standard for identification in the recycling industry. This method identifies
polymer type based on the IR reflectance off the material, which is fast, accurate and non-destructive
but the technology can be quite expensive (Zhu, et al. 2019). Due to this expensive nature,
spectroscopy is mainly used for plastic identification in large industrial machines that sort vast amounts
of material. Thus, there is very little to no affordable options of spectroscopic plastic identification for
small to medium scale recyclers.

A promising solution to this gap in the market was proposed in a pre-print paper (Straller & Gessler.
2019), which used the idea of “discrete spectroscopy” paired with a machine learning model in a
handheld device to identify plastic types. The device they developed reached 95% accuracy across 4
types of plastic, however this was on an extremely small and non-diverse sample set. An open-source
project, “The Plastic Scanner” was started as a way of continuing the work of Straller & Gessler and
the project has made some great improvements, however they have yet to develop an all-in-one
device with accuracy & reliability suitable for commercial use.

This report will outline the development of such a plastic scanner device and explore methods of how
the accuracy and reliability can be improved to make it suitable for small to medium scale identification
& recycling. The findings will be contributed back to the open-source project and community so that
the technology can remain accessible and continue to improve over time.

Figure 1: The completed device



2 Literature Review

2.1 Existing Research

2.1.1 Conventional Spectroscopy

Due to the well-documented effects that plastics have on the natural environment and the resultant
increased push for more effective recycling, there are several research papers into methods of
identifying plastic types. The most common identification method is certainly the use of Infrared
Spectroscopy, which according to (Zhu, et al. 2019) is likely due to the technologies ability to be
“accurate, non-polluting, non-destructive, and the measuring is rapid without surface pretreatments”.
The technology works by measuring the reflectance off a plastic object at different wavelengths of IR,
which will produce a similar output to that of other plastic objects of the same type (Angelin, et al.
2021). Due to the wide variety of plastic types and additives included within them, there has been the
formation of two main IR ranges used for identification. Groups like (Zhu, et al. 2019), (Pakhomova, et
al. 2020), (Freitag, et al. 2000) and (Rani, et al. 2019) all use a range of around 800-1700nm (Near IR),
whereas (Angelin, et al. 2021), (Yan & Siesler. 2018) & (Unimaya, et al. 2023) use a range around 1000-
3000nm (Mid IR). These directly correspond to Infrared ranges offered by common off the shelf InGaAs
(Indium Gallium Arsenide) detectors. As is shown in (Crocombe. 2018), the Mid IR range tends to fair
better for plastic identification compared to the devices that used Near IR. This is further supported in
the spectrographs found in (Becker, et al. 2017) where the larger Mid IR range allowed for identification
of black (carbon additive) plastics, which are otherwise unidentifiable using Near IR. The issue with
Mid IR however, is that it is considerably more expensive, as again shown in (Crocombe. 2018) where
Near IR devices are hundreds of dollars and Mid IR devices are thousands.

Despite the disparity in costing and suitability for identifying plastic types, Near IR based devices can
still achieve suitably high identification accuracy by incorporating machine learning algorithms. This
can be seen in (Zhu, et al. 2019) where they incorporate a “Support Vector Machine” to improve the
accuracy of the device to an overall of 97.5% for PP, PS, PE, PMMA, ABS and PET plastics. Another quite
common method of improving accuracy in these devices is Raman or Fourier Transform infrared
spectroscopy, which is an analysis technique utilized alongside visual identification, as mentioned in
(Pakhomova, et al. 2020). However, they go on to say that “A common disadvantage of these methods
is that they are expensive, require qualified staff and have to be placed in the laboratory and thus
cannot be used in the field. ” So, whilst this is a very common and effective way of increasing accuracy,
it is not applicable to a handheld device.

2.1.2 Handheld Spectrometers

As can be seen in the previous section, most of the literature on this topic centers around the science
behind IR plastic identification, with little research into application. There are a couple of examples
where research has been conducted specifically into the application of IR spectroscopy for handheld
or portable devices. (Angelin, et al.2021) states how “Until very recently, handheld spectrometers were
the domain of major analytical and security instrument companies” but now due to “low-cost visible-
shortwave NIR instruments” there are capable and effective handheld instruments suited to “giving
answers to non-scientist operators”. (Angelin, et al.2021) and (Yan & Siesler. 2018) both conduct
comparisons of off the shelf spectrometers capable of sensing spectra in the 1000-3000nm range,
however these technologies are still very expensive.

A promising low-cost sensing solution is detailed in (Straller & Gessler. 2019), with the proposal of a
“handheld discrete spectrometer” for plastic identification. A discrete spectrometer is different from
a traditional spectrometer, in that it only measures reflectance at a few points within a given range,



rather than a continuous output. For example, Straller & Gessler only measures the reflectance at 7
points in range from 850-1650nm, which dramatically reduces the cost; and accuracy, compared to a
traditional spectrometer. Similar to (Zhu, et al. 2019), Straller & Gessler also use a machine learning
model to evaluate the collected date and determine the most likely plastic type, with them being able
to achieve 95% accuracy (Straller & Gessler. 2019). However, this was only across 4 types of plastic and
consisted of a very small sample set of less than 20 individual plastic samples. They mentioned that
further research and development is needed for such a device to be viable, in particular improvements
are needed for the signal processing and the amount of LEDs on the device.

2.2 Existing Solutions

There are a few handheld material/plastic identification products that are currently available on the
market, notably the NIRvascan (ASP Laser Inc, 2023) and PlasTell devices (Matoha, 2022). These
products use conventional spectroscopy for their identification method and are thus quite expensive.
The most reasonably priced option is the NIRvascan device which is based on the Texas Instrument
NIRscan development module. This is a small, battery-operated device that uses optics and DLP
technology to obtain an intensity over wavelength response of a given sample, however it does not
output a material type based on this graph. This is likely due to this being targeted at scientific
applications where such classification it is not entirely necessary or helpful to the user. Similarly, the
PlasTell device is another handheld conventional spectroscopy device, however it is not battery
operated and is thus not portable. Where the PlasTell has the advantage though is that is has been
specifically designed to identify plastic polymers and will indicate this on a small screen after each
scan. The identification is achieved by leveraging a custom-built machine learning model which
comes pre-installed. This device is used in a reasonably number of recycling facilities, however the
price is still quite high with it being 50% more than the NIRvascan.

Another existing solution is the previously mentioned open-source project the “Plastic Scanner” (De
Vos, 2023). This project was started with the goal of continuing the discrete spectroscopy work that
Straller & Gessler (ReRe meter project) had outlined in their pre-print paper. The hope of the
project’s coordinator is to develop an affordable plastic identification device and keep the technology
open and accessible to all, so that it can have an even greater effect on the global plastic recycling
issue. There have been a series of contributions by several individuals to this project, which has
resulted in some good progress made on the device from Straller & Gessler. These contributions have
been making the technology more reliable to work with, use more accessible componentry and
added more plastic types that can be identified.

2.3 Impacts of Plastic & Plastic Identification Technology

Plastic has two major problems that it poses to the environment, its production and its disposal. Most
plastic is produced from crude oil in a process that releases large amounts of green house gases into
the environment. Plastic production is contributing about 3.3% of the global greenhouse gas emissions
each year (Ritchie & Roser, 2023). The problem with plastic disposal is that it breaks down extremely
slowly, sometimes taking hundreds of years to break down into its fundamental components (Jack,
2022). During this time “Micro Plastics” (very small pieces of plastic) are produced as the material
wears, which can then contaminate soil & organisms along the entire food chain (Lee et al., 2023). A
build up of this micro plastic can alter bio-chemical processes or act as a medium for toxins. This means
that every time plastic is littered or discarded to landfill, the plastic contamination issue continues to
grow.



Recycling can help reduce the negative effects of both of these issues, as recycling reduces the need
for production of new plastic, and it helps reduce the amount that ends up in our natural environment.
However, as previously stated plastic recycling has its own issues, namely the need to identify plastic
polymer types and sort them before the recycling process. Current sorting & identification technology
is targeted for large industrial scale recycling which limits who is capable of helping solve the plastic
pollution problem. Thus, the development of a cheaper and more accessible plastic identification
technology could have a tremendously positive impact on both the environment and society.



3 Project Overview

3.1 Project Scope

The project that is being proposed is to develop a low cost, handheld device that is capable of reliably
identifying common plastic types easily, quickly and with an accuracy of over 90%. The findings will be
contributed back to the Plastic Scanner project, in order to continue the openness and accessibility of
this technology. Depending on the level of success that is reached in this project, considerations for
manufacturability and commercialisation may be taken into account.

This scope is very broad and will encompass many facets of engineering including mechanical,
electronics, embedded systems and machine learning. To avoid underdelivering, the project will be
split into distinct stages and utilise iterative prototyping during development. As the
sensing/spectroscopy related systems are the most fundamental and important parts of this project,
they will be prioritized. The full development plan is outlined in 3.3.

3.2 Aims & Objectives

e Develop a “Sensing” PCB with the necessary electronic components to test discrete
spectroscopy measurements. The PCB should be able to communicate with a microcontroller
using less than 8 wires and it should have a signal-to-noise ratio of less than 1%.

e Develop a machine learning model capable of classifying plastic types based on discrete
spectroscopic measurements. Accuracy should be over 90%

e Develop methods and designs of incorporating the previous objectives into a handheld device.
In particular it should be comfortable to hold, have a LCD screen to act output for the device
and have a battery life of at least 2 hours.

e Throughout the development process, cost of parts or manufacturing should always be taken
into account.

3.3 Timeline & Milestones

1. Concept Formulation
a. Background research and literature review.
b. Discuss possibilities with academic supervisors.
c. Decide on the scope of the research.
2. Explore Electronic & Machine Learning Requirements.
a. Experiment with off the shelf spectroscopic sensor.
b. Research existing solutions and similar projects.
c. Explore the machine learning approaches for classifying plastic types.
3. Design & Develop Sensing PCB
a. Design & develop the PCB using accessible electronic components.
b. Program & test the PCB.
c. Iterate and continue to new prototypes as needed.
4. Develop Suitable Machine Learning Model
a. Build a labelled dataset of plastic scans.
b. Begin training a machine learning model on this data set.
c. Continue to refine the model and the dataset to improve accuracy.
d. Iterate and continue to new prototypes as needed.



5. Design & Develop Components for Handheld Device
a. Select necessary components for a handheld device.
b. Wire together and test the components.
c. Design the device enclosure in CAD, accounting for all components.
d. 3D print the enclosure.
e. Iterate and continue to new prototypes as needed.
6. Integrate
a. Assembly the mechanical and electronic components together.
7. Final Testing & Refining of Solution

a. Develop a new Machine Learning Model with the new integrated device.

b. Complete final testing of the device and model.

A full Gantt Chart is provided in Appendix A.3.
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4 Methodology

4.1 Discrete Spectroscopy for Plastic Identification.

As mentioned previously, Discrete Spectroscopy is a recent technological development (2019) but
through projects like the ReRe Meter and Plastic Scanner it has shown the potential to be suitable for
plastic identification. However, in both of these a major concern was that only 8 data points was not
enough to reach sufficiently high accuracy levels, as conventional spectroscopy has hundreds or more
over the same spectral range. The issue of course is that the IR LEDs that enable the discrete data
points are very expensive and there are only a few LED wavelengths available in the NIR 800-1700nm
range that is commonly used. More LEDs could be added by acquiring LEDs above 1700nm; further
into MIR, however as mentioned earlier this is much more expensive.

LED Intensity vs. Wavelength
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Figure 2: (Left) 8 point discrete spectroscopy method. (Right) Device LEDs & photodiode layout.

4.1.1 Methods of increasing number of data points

Having made this realisation, | begun to ideate other potential methods of increasing the amount of
data points. An idea that did stick was to utilise superposition to gain extra data points from the same
number of LEDs. The premise is to shine 2 LEDs with close wavelengths at the same time, allowing the
light to slightly superimpose and give a unique intensity value. See the LEDs are labelled with the peak
wavelength they emit, however they still produce small amounts of wavelengths around that peak.
Because of this, the intensity measured by the photodiode is not of a single wavelength but rather the
area under intensity/wavelength curve of each LED. Thus, if we had the same 8 LEDs that were used
in the Plastic Scanner project but we shone adjacent LEDs together (1+2, 2+3...7+8 = 7 points) as well
as each individually (8 points), we would end up with 15 total data points. Although purely theoretical,
| considered it plausible enough that it was worthwhile experimenting with especially considering the
alternative solutions were expensive and inaccessible.

Superimposed LED Intensity vs. Wavelength Superimposed LED Intensity vs. Wavelength

—— LED 1nm + LED 2 nm 12 —— Superposition
~—— LED2nm + LED 3nm
— LED 3 nm + LED 4 nm
—— LED 4 nm + LED 5 nm
—— LED S nm + LED 6 nm
— LED 6 nm + LED 7 nm

LED 7 nm + LED 8 nm

Intensity
Intensity

J

600 800 1000 1200 1400 1600 1800 2000 600 800 1000 1200 1400 1600 1800 2000
Wavelength (nm) Wavelength (nm)

Figure 3: (Left) 8+7-point discrete spectroscopy method. (Right) Full superposition response.
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4.2 Electronics Design & Development

The electronics development for this project was split up into different sections in order to prioritise
the more important developments, but also to allow for modularity of the design. Because there are
so many different aspects and unknowns in a project like this, modularity is a huge advantage as it
simplifies things like debugging and makes it simple to swap out sections with an improved version.
The electronics were split up into 3 main sections:

- Scanning PCB: Contains all the electronics components involved in obtaining spectroscopic
values.

- Microcontroller: Contains the processing and power management side of the project.

- Peripherals: Contains things like the Touchscreen, buttons, switches and plugs.

4.2.1 Scanning PCB

The scanning PCB was one of the most important systems that needed to be developments for this
project, and thus demanded considerable time in order to complete. It is comprised of 3 subsystems
which are responsible for the LED control, photodiode signal amplification and converting analogue
signals to digital. The software that was used to design all of the PCBs for this project was EASY EDA,
which is made by the PCB manufacturing company JLCPCB. The decision to go with this particular
design software was made because | had previous experience using it and it has a large library of
existing electronic components, complete with symbols and 3D models. Full schematics can be seen
in Appendix A.4.

4.2.1.1 Prototype 1 Board

With the research into discrete spectroscopy completed, | began to design the first prototype for the
scanning module. As this was my first attempt at such a complicated PCB design, | decided to focus on
keeping the design simple by only including the necessary components, lots of debug probing points
and having no considerations for space efficiency. Where possible, | wanted there to be a single
communication protocol across all the electronic components, which in this case was 12C due to its
abundance of components and simplicity of use.

L (™

uz
LR R

CEIRINN
foie i

Figure 4: The first custom PCB prototype
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LED Control

The design consideration | wanted to address foremost, was how to achieve the superimposing
intensity method that | had theorised in the research stage. | needed a way of controlling the
brightness of the LEDs, because if | simply turned two LEDs on at full brightness, | would likely saturate
the OP Amp sensing circuit. | could decrease the amplification gain, however then | would be sacrificing
resolution of the reading in the ADC circuit. After some searching, | came across the TLC59108IPWR
Programmable PWM LED Driver by Texas Instruments. This is an 8-channel drain I2C LED driver capable
of outputting an 8-bit programable brightness to any LED. With its max 120mA current output, this
driver will easily allow 2 LEDs to be powered at one time and at whatever brightness value gets closest
to max resolution without saturating. This driver also has an input resistor which allows easy control
of amperage to all LED channels.

GND
3.3V
R7
u3
750 i cset08PWR
L]

Hrext vee (22

£/ A0 SDA |13 SDA

S1AL SCL= SCL

/A2 RESET# £ LED_RESET

2| A3 GND 22
LEDI > OUTO# OUT7# [t2 LEDS
LED2 5 OUT1# OUT6# 1= LED7

5| GND GND 25
LEDSBj OUT2# OUTS# QSLEDé
LED4 OUT3# OUT4# LED5

Figure 5: 8ch PWM LED Driver Schematic

Photodiode Signal Amplification

As mentioned previously, the most common type of IR photodiode that is used are made from InGaAs.
As IR light hits the photodiode, a current is produced between its terminals which is proportional to
the intensity of light. Both the ReRe meter and Plastic Scanner projects used an InGaAs photodiode,
however they selected a Surface Mount Device (SMD) which has an extremely small active area of less
than 0.075mm. The active area is the area that is photosensitive and it affects both the speed and
accuracy of acquiring intensity values. The decision was made to go with a larger through hole InGaAs
photodiode which had an active area of 0.25mm; 3 times bigger than the SMD component, and also
has a cylindrical shroud around it to limit unwanted light being detected. Because of its larger active
area this component is theoretically slower at reacting, however it is more accurate and reliable in its
readings which is the main reason for the selection. It also had the added benefit of being cheaper and
more accessible than the SMD equivalents.

Directly connected to the photodiode, there is a dual OP AMP IC with the photodiode terminals
connected to each of the two inverting OP AMP inputs. This dual inverting amplification is also known
as differential input and was proposed in both the ReRe meter project and later the Plastic Scanner
project. It is a superior choice over a single differential amplifier design because it allows for “common
mode rejection”, which effectively means noise/interference get cancelled out when you compare the
two signals. Because of these advantages and its proven use case, | decided to follow the same design
for my circuit, including the same components to achieve the same gain, as if this proved too low |
could always easily change the passive components.
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Figure 6: Photodiode & Operational Amplifier Circuit

An issue was encountered in this first prototype board related to the amplification circuit that both my
board and the Plastic Scanner board where using. The problem was that 3.3V was both the reference
and the power voltage for the OP AMPs, which means they were subjected to saturation as the signal
was amplified into the 3.3V rail. To remedy this | made a cut in one of the board traces and soldered a
wire to a 1.5V reference voltage. This was a temporary solution, but it solved the problem and also
massively increased the gain achievable from the same setup.

ADC

With the signal now converted from a current to a voltage and amplified, it can be interpreted by an
analogue to digital converter (ADC). Because the OP AMPs were setup in a dual inverting method, an
ADC with differential capabilities is needed. As | went with the amplification circuit design used in the
Plastic Scanner project, | decided to use the same ADC as well due to it already being perfectly suited
to the problem. The IC is the 24bit NAU7802 differential ADC which has the ability to communicate
over 12C, which is perfect as it means all IC’s on the scanning module PCB will use the same
communication protocol. The extremely high resolution of 24bit is also very well suited to the problem
at hand as it means differences in plastic reflectance values can be easier to discern. Despite being
24bit the effective resolution is actually lower as this is a sign integer value (range is -22* to +2%3), and
because the current from photodiode terminals only flows in one direction the ADC will only read
positive values. The NAU7802 has a calibration command that will try and place the baseline around
0, which means the max effective resolution that can be achieved is the positive component which is
23bit. This is still a very large resolution that means light intensity can be placed on a range of 0 to
8,388,607.

GND 33V

GND

Figure 7: 24bit Analogue to Digital Converter Circuit
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4.2.1.2 Prototype 2 Board

The prototype 2 board largely used the same components as the first, however the layout was
redesigned to make it more compact and there were a couple of changes to improve the boards
accuracy and reliability.

R8E B IR

3740499A_YS5_230829
c o

Figure 8: The second custom PCB prototype

Circular PCB

The decision to change to a circular PCB was made in order to make it simpler and more aesthetically
pleasing. This also provided an opportunity to make the design more compact as this was neglected in
the first prototype. It also has the added benefit of further increasing the signal integrity too, because
lines between components where now much shorter.

Removed Probing Pins

Probing pins were initially incorporated into the design for testing and debugging purposes, however
with the PCB working quite well they were now simply redundant and restricting the design from
becoming more compact. Thus they were removed from the updated design.

Added Decoupling Capacitors

Although not a consistent issue, sometimes the power lines of the PCB were quite noisy, which would
affect the accuracy of the scan data. | decided to add some decoupling capacitors close to the signal
ICs which | had neglected to include in the first prototype, which should improve reliability even more.

Added 1.5V Regulator for OP AMP Circuit

Possibly one of the most important changes was to include a LDO (Low Drop Out) regulator IC on the
board itself, as previously | had to rely on an external power supply to provide the newly appropriate
1.5V reference voltage to the OP AMPs and the IR LEDs.
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Figure 9: Low-Dropout Regulator Circuit
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4.2.2 Processing & Power Electronics

With the scanner PCB developed, | now had to make a decision on the type of processing unit | should
go with to control the handheld device. The main choice to be made is whether to go with a
microprocessor or a microcontroller, which is effectively a choice between powerful processing vs
smaller and more efficient computing. As the computational requirements for this project are not
exceptionally high and it is supposed to be a portable device, | made the decision to go with a
microcontroller as it provides enough power but in a compact and energy efficient manner. After some
searching, | decided to use the Sparkfun Thing Plus C ESP-32 board which has an integrated LIPO
battery charger and an SD card slot. This is an awesome device that will massively simplify
development and integration as | can simply plug in a compatible LIPO battery and this ESP-32 board
will be able to power the entire device. It also has the ability to charge the battery over the boards
USB-C port. The SD card is a non-necessary; but nice to have, inclusion as it could be used to store scan
data of plastic from field situations. This data can then be uploaded to a computer and labelled so it
can be used in future datasets for the training of the machine learning model.

Figure 10: Internals of completed device.

4.2.3 Peripherals

To fully integrate all subsystems for this handheld device, there needs to be a couple of peripheral
components added. These mainly have to do with user input and experience, namely methods of
controlling the device, programming/communicating with it and powering it. A simple tactile push
button was included as the main method of taking scans with a touch screen LCD screen being used as
the method of display the data back to the user. Custom display outputs were developed in order to
properly communicate the output prediction of the machine learning model, as can be seen below:
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Figure 11: The LCD output based on the ML models prediction.

The touch screen was included with future proofing in mind, as it will allow the user to change
settings or modes of the device making it far more practical and versatile. The final peripheral
component was a USB-C breakout board which extends the microcontroller output to the bottom of
the device enclosure. This allows the user easy access to programming the microcontroller with
future updates and doubles as the method of charging the battery for the device.

4.3 Embedded Programming

The embedded programming was completed using VSCode as the IDE with the Platform 10 extension,
which is an open-source ecosystem for embedded development. C++ was the obviously choice of
programming language due to its support and vast number of existing libraries for embedded systems.
To simplify the development of the software, | decided to develop each sub-system separately and
integrate them as libraries later down the line when they were working as expected. The structure of
the code is outlined in the following flowchart.
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Figure 12: Flow chart of embedded software files. Blue is external library. Green is self-developed library.

With all of the libraries developed for each subsystem | could now work on the main file which would
execute the high-level functionality of the device. For a flowchart of the high-level functionality please
see Appendix A.7.
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4.4  Mechanical Design & Manufacturing

With all of the electronic components developed and programmed, | could now begin the
development of the mechanical structure of the device that would house all of this work. | first
modelled all the electronic and peripheral components in Fusion360 to ensure that the enclosure will
have sufficient space to fit everything. | then began to ideate and sketch out appropriate designs that
would properly account for functionality, aesthetics and user experience. | settled on a design similar
to one seen in the Plastic Scanner project. This was done because the design was aesthetic pleasing
and functionally proven, but also to keep some commonality between my developments and the
project | would contribute back to. The design was modelled with the intention to FDM 3D print it, as
this is a quick and effective method of manufacturing non-structural prototypes such as this.

TS BOIPSE K B =
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Figure 13: (Left) Device modelled in Fusion360. (Right) Completed device outdoors.

4.5 Data Collection

In order to develop a machine learning model, one must first develop a suitably sized dataset of high
quality data which will be used for its training. For this, | enlisted the help of a local design and plastic
recycling company by the name of Defy Designs, who supplied a large quantity of HDPE, LDPE, PP &
PVC plastics. | also collected multiple household plastics to add to and further diversify the collection.
With the plastics now obtained, | could connect the device to my computer over serial and recorded
scan data. Due to this being a handheld device, there are many factors that can affect the values
obtained, examples would be ambient light, background, distance the plastic is from the sensor,
thickness of the plastic, shape of the plastic and any additives in the plastic. Because of these factors
if one wants to achieve high accuracy across multiple plastic types, not only do you need diverse range
of plastic samples but you also need a diverse range of scanning methods. When building out this
dataset, | made sure to take multiple scans (on different faces of the plastic if applicable) of each type
of plastic following these methods:

- Scan with aluminium as background
- Scan with hand as background

- Scan free-floating in ambient light

- Scan free-floating in low light
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Figure 14: Different methods of scanning plastics.

These scanning methods should replicate the potential use in a practical application, which should
improve the reliability and accuracy of the device. In the end | decided to have 8 categories that the
ML model would identify which are HDPE, LDPE, PET, PETG, PLA, PP, PVC and Unknown. The unknown
category was an accumulation of several different scanned objects such as wood, clothing, aluminium
and also nothing at all. This was included so that the model would be able provide an output for things
it thought weren’t plastic. In total | collected 2580 unique scans of over 500 individual plastic pieces.

Figure 15: Identifiable plastic samples. All 7 plastic types.
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4.6 Machine Learning

Now with a relatively large dataset obtained, | could begin developing/training the machine learning
model. For this, | decided to use TensorFlow and python as these are some of the easiest & most
popular solutions for training models from scratch. There was some extensive customisation and
experimentation in developing the machine learning model particularly with the data used, model
architecture, epochs and batch size. These variables often needed to be changed when there were
changes to the amount or type of data used, as they affect the optimisation of the model.

| first started by training a model only including two types of plastic (PE & PP) and an unknown category,
which was giving an acceptable accuracy of about ~88%. However, as | added more plastic types this
accuracy would drop each time, ultimately with the 7 types of plastic all included the model was only
capable of achieving an accuracy of ~78%. After some research | realised that these poor accuracies
were likely down to the dataset being imbalanced, as | had not taken a similar numbers of scans for
each category type. | decided to test the use of the SMOTE toolset to artificially balance the categories,
increasing all of the lower numbered categories to the number of the largest one, which was ~400
samples. Doing this had a noticeable impact on accuracy, increasing the 3-category model to ~97% and
the 7 category model to ~88%. Whilst very promising the 7-category accuracy was still too low from
what the device needed to achieve, and | began to theorise that the dataset was still too small. Hesitant
to sit down for several hours to collect even more scan data, | decided to test my theory utilising SMOTE
to artificially increase the size. | arbitrarily chose a 5x increase in size, which resulted in the 7-category
accuracy jumping to ~99%, with early stopping enabled and effectively zero noticeable overfitting this
number is very [high‘.

Input Hiddenl:  Hidden2:  Hidden3:  Output
15 128 256 256 8

Figure 16: Visualisation of the machine learning model architecture (Truncated).

The above picture is of the final model that | developed. This model was compiled using optimizer
Adam and loss sparse categorical cross entropy. Early stopping was enabled and a patience of 20 was
set to allow the model to continue decreasing the loss. The max epoch was set to 500, using a batch
size of 512 and a validation split of 20-to-80. This model was loaded in a python script on a host PC,
from which it would receive scan data over Bluetooth from the ESP-32 in the device. The predicted
plastic along with its confidence was then transmitted back to the device to be displayed. For more on
the machine learning model and the code in general, please see Appendix A.5 & A.7.
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5 Analysis of Results

5.1 Scanning PCB Accuracy & Reliability

5.1.1 Light Intensity Readings

One of the most important requirements that needed to be met by this PCB, is for it to have very low
noise so that it can provide more reliable and accurate scan data to the machine learning model. The
subsystem responsible for this on the PCB, is the analogue sensing circuit comprised of the photodiode,
OP Amp and ADC. To quantify the noise on the PCB, the device was placed firmly against a reflective
surface and 5000 individual readings from the ADC were collected. This was done once with zero light
(Dark) applied to the photodiode, and once with max light intensity. A relative ambient light reading
was taken before each test and subtracted from each reading to normalise it for analysis. This data was
collated, and the statistical results are as follows:

Accuracy (Dark) Accuracy (Light)

20000 30000 40000 50000

Intenisty

—1000 =500 0 500 1000 1500 0 10000

Intenisty

Figure 17: ADC accuracy Boxplots.
NOTE: The negative Intensity/ADC readings are caused by noise and imperfect ADC calibration. Intensity value is from the
ADC which ranges 0-2%3.

Dark Light
Min Value -1252 -2667
Max Value 1784 50847
Range 3036 53514
Median 66 10815
Mode 363 5811
Mean 76.89 12545.77
Ql -265.0 6440.75
Q2 66.0 10815.00
Q3 417.25 17105.25
Noise/Signal 0.0362% 0.6379%
Signal-Noise Ratio (dB) 14.4131 1.9525

Table 1: ADC Dark vs Light accuracy.

As can be seen in the above results, the PCB appears to have extremely low amplitude of noise in both
cases. The test in the dark performed significantly better than the one in high light intensity, with the
data inferring that as the light amount increases so does the noise.
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It should be noted that even in the worst case (light) scenario, the PCB only ever has 0.64% noise peaks
with 75% of scans being below 0.20% and an average of just 0.15%. This is a remarkably good result,
and as can be seen later in the analysis it allows for the ML model to achieve very high accuracies. See
Appendix A.5 for the code used in this section.

5.1.2 LED & LED Driver Circuit Repeatability

An important factor for the practicality and useability of this device, is how quickly it can scan a piece
of plastic. Throughout early testing of the PCB | was having difficulty obtaining consistent values from
the ADC. As the ADC was a ultra-low noise device and photodiodes tend to have response times in
the nanoseconds or even picoseconds (Wang, 2011), | theorised that the inconsistent values were
due to the rise time (time to turn on) of the LED’s. There was no rise time listed on the datasheet for
the LED’s | purchased so | decided to follow a similar approach to that of 5.1.1. | wrote a script that
would shine an LED and read from the ADC, however it would iteratively increase a time delay in-
between shining the light and reading its intensity.

Oms | 2ms 4ms 6ms 8ms 10ms 12ms 14ms 50ms
LEDO | 699 2137 8349 483093 1590789 | 3012203 | 3021741 | 3036762 | 3086584
LED1 | 1113 | 4523 20147 968089 3077575 | 5636621 | 5648551 | 5665668 | 5643822
LED2 | 933 26623 87145 2168929 | 5497845 | 7043821 | 8384661 | 8388704 | 8388704

LED3 | 1641 | 59181 | 171857 2826285 | 6224747 | 7528371 | 8388387 | 8339430 | 8388704
LED4 | 4213 | 152701 | 358105 3701227 | 6868201 | 7880869 | 8388703 | 8371384 | 8388704
LEDS | 397 423 586449 4494585 | 7366103 | 8099381 | 8185335 | 8385354 | 8388704
LED6 | -27 617 509863 386013 1825411 | 4752421 | 4781001 | 4843522 | 4773050
LED7 | 55 1787 458731 362063 1259879 | 2516153 | 2521517 | 2529680 | 2474056

Table 2: LED response time.

The above graph was the result of this experiment. As can be seen, a delay of at least 14ms is required
in order for all LED’s to reach 99% of their max intensity, with LED 5 being particularly slow.
Implementing a delay of 15ms before every reading requested from the ADC, resulted in extremely
consistent values. See Appendix A.5 for the code used in this section.

5.2 Comparison of Identification Methods

The following 3 sections all use the same original dataset of 500 plastic items, totalling 2580 individual
scans, however scan data not necessary for a particular sections model are selectively ignored. This
was done to allow for the most valid comparison of the different models, with the only thing changing
being the number of discrete measurements.
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5.2.1 8-Point Discrete Method

The 8-point method follows the original approach proposed by the Straller & Gessler, where an
intensity value is collected for each of the IR LEDs. In their pre-print paper, they had 7 LEDs and
achieved an accuracy of 95% (Straller & Gessler. 2019) however, this was only a data set of 16 individual
plastic items across PET, HDPE, PP & PS. In contrast, this 8-point method developed in this paper
achieved an accuracy of 95.96% (0.12 loss) on a dataset of 2580 individual items and added LDPE, PVC,

PLA & PETG plastics.

Training and Test Loss Training and Test Accuracy

— Training Loss
Test Loss.

50 100 150 200 250 200 350 400
Epoch

Figure 18: 8-Point Discrete Method theoretical accuracy graphs.

The above figures show the visualisation of this model, comparing the Loss and Accuracy for both the
test and training datasets. As can be seen, there is extremely little, to no, overfitting with two methods
following very close to one and other. Because SMOTE was used to drastically increase the size of the
dataset, a large batch size of 512 was used, which resulted in very smooth and consistent training of

the model.

5.2.2 8+7-Point Discrete Method

As mentioned earlier, this method is one that | theorised could be a suitable method of increasing the
accuracy of the device without adding more LEDs or cost. This method includes the exact same 8 points
from 5.2.1, however it adds 7 extra points to the data set by shining adjacent LEDs at half brightness
to acquire intensity values. These values represent the intensity of the superimposed waves and similar
to the other values should be unique to each plastic type. Using the exact same model architecture
and values from 5.2.1 | trained a new machine learning model with these extra data points. The result
from this was a model that achieved an accuracy of 99.37% and a loss of 0.02.

Training and Test Loss Training and Test Accuracy
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Figure 19: 8+7-Point Discrete Method theoretical accuracy graphs.
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This is an amazing accuracy to achieve, especially considering this model uses the exact same
architecture and hardware as that used in 5.2.1 but with an increase in accuracy of 3.43% (1-(95.96%
/ 99.37%). This is all whilst still effectively having no overfitting noticeable in the model visualisation
seen above.

5.2.3 3+2-Point Discrete Method

After seeing the benefits of utilising superimposed intensity values, | wanted to explore reducing the
number of LEDs in order to decrease the cost of the device. Of course, the accuracy would be affected
and any such device would be targeting a consumer market that cares less about extremely high
accuracies and more about affordability. After testing different LED combinations | eventually settled
on amodel using 3 LEDs (850nm, 940nm, 1200nm) and their 2 corresponding superimposed intensities.
These LEDs were selected as they were the cheapest, the exact cost savings are explored in 5.4.2.
Because this model has far fewer data points per scan, it is not reasonable to assume that it could
achieve an effective accuracy, so instead of the model classifying plastics into their polymer type it will
instead make a binary choice between ‘Unknown’ and ‘Recyclable Plastic’. The idea being that such a
device could indicated if a plastic can be put into the yellow recycling bin or not, for this reason PCV,
PLA and PETG were removed from the dataset as these are generally not recyclable in such a manner.
With these changes made this model was able achieve an accuracy of 96.77% and a loss of 0.09. This
was using mostly the same model architecture as the previous models, however with a lower batch
size of 256 (due to their being less data points) and with a lower patience of 10 to help reduce over
fitting.
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Figure 20: 3-Point Discrete Method theoretical accuracy graphs.

As can be seen above, this model is far noisier in its training and has some noticeable; yet acceptable,
overfitting. This noise is likely due to the decrease in data points making it harder for the model to
discern patterns in the data, as well as the fact that this reduction also increases the likelihood of
outliers affecting the model. Despite this model performing worse than the previous ones, it shows
the potential of such a significantly cheaper device is to be developed for consumer needs. See Section
5.4 to compare the cost between the two devices.
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5.3 Real World Testing & Accuracy

Predicted Label Amount Avg. Confidence Correct Prediction
HDPE 44 97.90
HDPE LDPE 5 90.71 88%
PP 1 90.00
HDPE 6 64.50
LDPE LDPE 43 94.72 86%
PP 1 72.00
HDPE 1 74.00
PP PET 1 91.00 96%
PP 48 95.04
HDPE 1 99.00
PET 46 97.84
PET PLA 1 99.00 92%
PVC 2 94.33
PVC 49 98.27
PVC Unknown 1 53.00 98%
PLA 49 97.84
PLA PVC 1 99.00 98%
PETG 46 96.89
PETG PLA 2 95.00 92%
PVC 2 98.50
Average Accuracy 92.86%

Table 3: Real world device accuracy.

To test the real-world accuracy of the device, 50 samples of each identifiable plastic type were
collected, which were a mix of samples used to train the model and ones that it had never seen before.
A scan was taken of each plastic sample and the predicted plastic type along with the confidence score
was recorded. As can be seen from the above table, bar the PE plastic all plastic types had a real-world
accuracy of over 90%, with the average being 92.86%. This is very acceptable accuracy for such a
rudimentary prototype, especially one that tries to identify between HDPE & LDPE which are very hard
differentiate. This device also only takes 2.5 seconds to identify a plastic sample, from button press to
display output. Overall, this test provides further evidence that this device has the capability to be a
functional and very useful tool in recycling environments.
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Figure 21: Completed device during testing.

5.4 Cost

An important factor of this paper was to explore making a “low cost” device. This section will look at
the cost for 2 proposed devices, an 8-LED high-accuracy focussed device, and a 3-LED affordability
focussed device. The costs were calculated including all Consumer-Off-The-Shelf (COTS) components,
PCB manufacture and PCB assembly for different quantity amounts. For full BOM, please see Appendix
A2.

Device Cost (8-LED)

Total Price Price Per Device
Qty 5 $1,104.55 $220.91
Qty 100 $13,564.33 $135.64
Qty 1000 $112,669.32 $112.67

Table 4: Device cost summary (8-LED).

Device Cost (3-LED)

Total Price Price Per Device
Qty 5 $361.45 $72.29
Qty 100 $4,447.33 $44.47
Qty 1000 $36,429.32 $36.43

Table 5: Device cost summary (3-LED).

As can be seen in the above tables, because IR LEDs are reasonably expensive, the 8-LED device is up
to 3.09 times the cost of the 3-LED device. Despite this both proposed designs are a very viable,
relatively cheap method for plastic identification, especially considering the cost of current options.
The NIRvascan device costs US$2965 (ASP Laser Inc, 2023) and the PlasTell device costs US$3686
(Matoha, 2022).
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6 Difficulties & Recommendations

6.1 More Diverse & Larger Plastic Database

One of easiest ways of increasing the accuracy of the device is to continue building out an even more
diverse and larger plastic database, complete with all scan data and labels. As can be seen in sections
4.6 & 5.2, a model trained on a much larger dataset is not only more accurate but also more reliable.
Due to restrictions on time in this project, | had used SMOTE to artificially produce this larger dataset
as it was not feasible to collect all that data myself, however it is almost certainly worthwhile to replace
this with actual scan data. It would also be advantageous to continue adding more plastic polymer
types to improve the capability of the device, as the more plastics that can be reliably identified the
more valuable the device is.

6.2 TensorFlow Lite Integration

A major issue | faced towards the end of this project, was getting a functional TensorFlow Lite model
working on the ESP32 microcontroller. The ESP32 Thing Plus C microcontroller | was using had plenty
of memory (16MB) to run the TensorFlow model | had developed (400KB), however the device would
always run into errors during run time. The main reason | wanted the model integrated onto the ESP32
was so that the device could be completely portable, with no wires. To achieve this for testing purposes,
| simply communicated to the device over Bluetooth from a host PC. This is not always practical and
thus getting the TensorFlow Lite model onto the device would be very worthwhile improvement. An
alternative would be to use a small microcomputer like the Raspberry Pi

6.3 Further Research & Development of Cheaper 3 LED Device

Section 5.2 outlined the 3+2-Point Discrete Identification Method, which is a method that could be
used in an inexpensive 3 LED device to classify recyclable and non-recyclable plastics. This idea was
only briefly explored in this project, with the graphs in Section 5.2 showing how such a device could
reach suitable accuracies for a consumer market. More careful collection of data as well as a more
suitable machine learning model would be worthwhile avenues to explore to further develop such a
device.

6.4 Microcontroller PCB

Due to the relatively short timeframe for this project, | did not see it prudent to prioritise the
development of a custom microcontroller PCB when there were more important systems to complete.
Instead, | opted to solder the ESP32 to some perf board and connect wires to the scanning PCB to this.
This is far from optimal as it was not possible to properly secure such a solution to the 3D printed
structure, and it has a proclivity to swish some of the wires. Given more time, developing a custom
PCB would be a very advantageous improvement.
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6.5 Larger Active-Area Photodiode

As mentioned in Section 5.1.2, one of the improvements | made on this device over the Straller &
Gessler device was the use of a larger active-area photodiode. The photodiode | had has an active-
area with a 0.25mm radius, however through testing it looks like even larger areas could easily be
accommodated. Considering the device can already obtain the scan data very quickly, a photodiode
with an active area of 1mm or 2mm radius could be used. This could further improve the accuracy and
the reliability of the device, however with a slightly more expensive photodiode.

6.6 A Better Mechanical Structure

The mechanical structure and design for this project was of a much lower priority when compared to
the electronics and software systems, and because of this the design is in need of several
improvements. These include proper points to secure components, a more ergonomic handle, a
protective cover over the scanning PCB hole and a round foam ring to improve surface contact with a
plastic sample. Using a more advanced 3D printing technology such as SLS or injection moulding would
be a worthwhile change over FDM 3D printing, as the layer lines and dimension inaccuracies are less
than favourable.

7 Conclusion

This report has explored the development, testing and analysis of a low cost, portable discrete
spectroscopy based plastic identification device. The finished device was capable of identifying 7
plastic polymer types, in less than 2.5 seconds and with a real-world accuracy of 92.86%. There were
several specific novel improvements that led to achieving this successful device, in particular the 8+7-
Point Identification Method, the proposal of an even cheaper 3-LED device, considerations for a
handheld device and improving the signal-to-noise ratio of the scanning PCB. The findings of this report;
along with all supporting documents and files, will be shared with the Plastic Scanner project so that
this technology and device will continue to be developed in an open-source manner.
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Appendix

A.1 Communication Log

Project Title: A Low-Cost Handheld Device for Plastic Identification

Student Name: Kyle Jewiss | Supervisor Name: | Sarath Kodagoda

Date Event Topic of Communication Outcome

8/3/2023 Video Call Project Introduction Begin ideating.

15/3/2023 Video Call Forming Research Question We worked out a clearly
defined research question
together.

22/3/2023 Video Call Discussed potential project Conduct research and buy

components to purchase for | some components
testing

29/3/2023 Video Call Progress update and Supervisor advised me to

literature review discussion work on my literature
review.

5/4/2023 Video Call Progress update on how Got some software

component testing is going suggestions for some
problems | was having

19/4/2023 Video Call Discussed Machine Learning | Look into the user of

applications in the research Tensor Flow Lite on a
microcontroller

3/5/2023 Video Call Discussed research proposal | Focus on getting the
research proposal done for
the subject

17/5/2023 Video Call Progress update Finish research proposal

16/08/2023 Video Call Timeline for the semester Discussed what we wanted
to get done and how we
might go about this.

23/08/2023 Video Call Progress update Designed Scanning PCB.
Researching machine
learning

30/08/2023 Video Call Progress update PCB received and soldered.
Began embedded
programming

6/09/2023 Video Call Progress update Embedded programming
mostly done. ADC readings
needs calibration.

13/09/2023 Video Call Progress update Began training ML model.
Designing 3D printed
enclosure.

20/09/2023 Video Call Progress update ML model of HDPE, LDPE &
PP with ~90% accuracy.
Enclosure complete.

27/09/2023 In Person Progress update, physically Need to add more plastics

Meeting showing hardware and improve reliability
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11/10/2023

Video Call

Progress update

Adding more plastics to
model. Programmed LCD
for output.

18/10/2023

Video Call

Progress update

99%.

Model now has 7 plastics
and theoretical accuracy of

25/10/203

Video Call

Final meeting

Final testing with
hardware. Start preparing
for Engineering showcase.

A.2 BOM Tables

8-LED
COTS Cost

Component Name Price (Qty 1) Price (QTY 100) | Price (QTY 1000)
Photodiode SD0050-3111-011 | $18.89 $7.33 $6.07
OP Amp OPA2376 $4.66 $3.21 $2.18
ADC NAU7802SGI $2.65 $2.02 $1.37
LED Driver TLC59108IPWR $4.56 $2.53 $1.72
LED 1 850nm $1.60 $0.76 $0.57
LED 2 940nm $0.71 $0.32 $0.19
LED 3 1050nm $27.64 $18.52 $16.07
LED 4 1200nm $18.81 $11.58 $9.59
LED 5 1300nm $18.81 $11.58 $9.59
LED 6 1460nm $18.81 $11.58 $9.59
LED7 1550nm $18.81 $11.58 $9.59
LED 8 1650nm $31.24 $20.93 $19.22
Regulator LP5951MFX-1.5 $1.49 $1.00 $0.63
LCD 1.28” Waveshare | $31.36 $16.02 $11.54
Microcontroller ESP32 - WeMos $9.60 $9.41 $8.83
Connector USB C $0.24 $0.24 $0.20
Battery 800mAh 3.7V Lipo | $1.60 $1.50 $1.45
Power Switch SPDT Switch $2.50 $2.25 $2.00
Push Button Tactile Button $0.40 $0.32 $0.16
3D Print - $0.95 $0.95 $0.95
Vibration Motor PE Actuator $1.95 $1.95 $1.95

$211.48 $130.11 $108.40

PCB
Manufacture | PCB Assembly Shipping
Price Price Price Total Per Piece

Qty 5 $3.17 12.7 $2.28 $18.15 $3.63
Qty 100 $18.57 57.13 $29.63 $105.33 $1.05
Qty 1000 $174.41 206.95 $137.96 $519.32 $0.52
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Total Price Price Per Device
Qty 5 $1,104.55 $220.91
Qty 100 $13,564.33 $135.64
Qty 1000 $112,669.32 $112.67
3-LED
COTS Cost
Component Name Price (Qty 1) Price (QTY 100) | Price (QTY 1000)
Photodiode SD0050-3111-011 | $18.89 $7.33 $6.07
OP Amp OPA2376 $4.66 $3.21 $2.18
ADC NAU7802SGl $2.65 $2.02 $1.37
LED Driver TLC59108IPWR $4.56 $2.53 $1.72
LED 1 850nm $1.60 $0.76 $0.57
LED 2 940nm $0.71 $0.32 $0.19
LED 3 1200nm $18.81 $11.58 $9.59
Regulator LP5951MFX-1.5 $1.49 $1.00 $0.63
Microcontroller ESP32 - WeMos $9.60 $9.41 $8.83
Connector USB C $0.24 $0.24 $0.20
Battery 800mAh 3.7V Lipo | $1.60 $1.50 $1.45
Power Switch SPDT Switch $2.50 $2.25 $2.00
Push Button Tactile Button $0.40 $0.32 $0.16
3D Print - $0.95 $0.95 $0.95
$68.66 $43.42 $35.91
PCB
Manufacture | PCB Assembly Shipping
Price Price Price Total Per Piece
Qty 5 $3.17 12.7 $2.28 $18.15 $3.63
Qty 100 $18.57 57.13 $29.63 $105.33 $1.05
Qty 1000 $174.41 206.95 $137.96 $519.32 $0.52
Total Price Price Per Device
Qty 5 $361.45 $72.29
Qty 100 $4,447.33 $44.47
Qty 1000 $36,429.32 $36.43
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A.3 Gantt Chart

A Low Cost, Portable Plastic Identification Device
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A.4 PCB Schematics & Design
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A.5 GitHub Links

The following link it to a personal repository on my GitHub. This code will be cleaned up for external
use and also submitted to the Plastic Scanner project: https://github.com/KyleJewiss/plastic-

scanner/tree/master

The Plastic Scanner project GitHub can be found through the following link:
https://github.com/Plastic-Scanner
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A.7 Embedded Programming Flowchart
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